Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, ...
Değerli Rektörümüz Prof. Dr. Mahmut AYDIN, çalışmalarımızı takdir ederek; bizleri onurlandırdı. Şahsım ve akademisyen arkadaşlarım adına hocamıza teşekkür ediyorum. Samsun Üniveristesi SAMÜ'de akademisyenlere başarı ödülleri verildi Rektör Aydın: “Marifet iltifata tabidir"
Abstract Cardiotocography (CTG) is a fetal monitoring technique used to determine the distress level of the fetus during pregnancy and delivery. CTG consists of two different signals including fetal heart rate (FHR) and uterine contraction (UC) activities. The linear features of FHR are the most powerful prognostic indices to ascertain whether the fetus in distress. In addition, it is observed that nonlinear features have produced very great results on the time series analysis in recently. In this context, the classification success of the neural network community designed based on the linear and nonlinear features of FHR is analyzed for the delivery process evaluated in three stages. The experimental results have shown that the system designed to distinguish normal and pathological instances is achieved the best classification accuracy at the first stage of the analysis. Also, the greatest contribution of nonlinear features to the classification accuracy is observed at the sec...
Yorumlar